闭区间套定理如何理解?
闭区间套定理的理解:闭区间套定理,是实数连续性的一种描述,几何意义是,有一列闭线段(两个端点也属于此线段),后者被包含在前者之中,并且由这些闭线段的长构成的数列以О为极限,则这一列闭线段存在唯一一个公共点。该定理反应了实数的完备性,是关于实数连续性的6个等价命题之一,因此可以由其他5个定理推导出来。但既然是关于实数连续性的定理,自然可以用实数的定义以及实数公理——戴德金定理来证明。定律影响:闭区间套定理由于具有较好的构造性,因此在实数相关的命题中有广泛的应用,故闭区间套定理不仅有重要的理论价值,而且具有很好的应用价值。例如用来证明单调有界定理,闭区间上的连续函数的性质(有界性、最值性、零点存在性、一致连续性等),拉格朗日中值定理等微分学上常用的定理。作为介绍,在这里给出用闭区间套定理证明单调有界定理和拉格朗日中值定理的过程。以上内容参考 百度百科—闭区间套定理
为什么开区间不适用闭区间套定理?
是因为极限和闭区间的性质。当n趋向∞时,区间两端收敛于同一极限,显然这个极限在最初的区间[a,b]之间,并且由于闭区间性质,区间内的所有值都能取到,这个极限就是区间的公共点。但是换成开区间就不一样了,区间端点是取不到的,可根据极限的性质(描述一种趋势),(a,b)间的点列完全可以以端点作为极限,所以当证明区间端点收敛于同一极限时,你就不能得出这个极限一定在区间内,更不能说它是所有区间的公共点。定义直线上介于固定的两点间的所有点的集合(不包含给定的两点),用(a,b)来表示(不包含两个端点a和b)。开区间的实质仍然是数集,该数集用符号(a,b)表示,含义一般是在实数a和实数b之间的所有实数,但不包含a和b。相当于{x|a<x<b},记作(a,b) 取值不包括a、b。
什么是实数的完备性?
实数的完备性等价于欧几里德几何的直线没有“空隙”。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。相关简介实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
什么是实数的完备性?
完备性如下:实数集完备性的基本定理共有6个,实数集的确界原理,函数的单调有界定理和数列的柯西收敛定理,将要学习的有:区间套定理,聚点定理和有限覆盖定理。它们都是等价的:由任何一个定理都可以推出其他5个定理。简介:完备性是指在数学及其相关领域中,当一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。完备性也称完全性,可以从多个不同的角度来精确描述这个定义,同时可以引入完备化这个概念。以上内容参考 百度百科-完备性