介值定理

时间:2024-09-16 11:55:31编辑:小松

介值定理定义是什么?

介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明。如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。使用在给出连续性的正式定义之前,将介值作为连续函数定义的一部分。支持者包括路易斯·阿博加斯特(Louis Arbogast),没有跳跃的函数满足介值定理,并且具有尺寸对应于变量大小的增量。早期的作者认为结果是直观的,不需要证明。博尔扎诺和柯西的观点是定义一个连贯性的概念(就柯西案中的无限小数而言,在博尔扎诺案中使用实际的不平等),并提供基于这种定义的证据。

介值定理定义是什么?

介值定理定义:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ,使得f(ξ)=C (a<ξ<b)。如果函数y= f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y= f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)= 0的根。介值定理应用:证明:将f作为圆上的任何连续函数。在圆的中心绘制一条线,在两个相对的点A和B处与其相交。令d由差 定义。如果线旋转180度,将取代值-d。由于介值定理,必须有一些中间旋转角,其中d = 0,因此在该角度。对于任何封闭的凸n(n> 1)尺寸形状。具体来说,对于其领域是给定形状的任何连续函数,以及形状(不一定是其中心)内的任何点,相对于函数值相同的给定点存在两个对象点。证明与上述相同。这个定理也是为什么旋转摇摆表将使其变得稳定的解释(受到某些容易遇到的限制)。

上一篇:成都中医药大学招生信息网

下一篇:没有了