代数余子式怎么求
第1行的代数余子式之和等于把原行列式的第1行元素都换为1所得的行列式, 第2行的代数余子式之和等于把原行列式的第2行元素都换为1所得的行列式, 第n行的代数余子式之和等于把原行列式的第n行元素都换为1所得的行列式,所有代数余子式之和就是上面n个新行列式之和。可以直接经过几次交换行形成对角阵,每次交换乘以一个-1。或者按照第一列展开,代数余子式系数是(-1)^(5+1),因为6的下标是51,同理再将余子式按照某一行或某一列展开。性质①行列式A中某行(或列)用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
余子式是什么意思?
在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。关系:一个矩阵的A(i,j)代数余子式是指A的(i,j)余子式Mij与的乘积,即:A的余子矩阵是指将A的(i,j)代数余子式摆在第i行第j列所得到的矩阵,记为C。C的转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。扩展资料相关应用在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:参考资料来源:百度百科-余子式参考资料来源:百度百科-代数余子式
代数余子式怎么求?
代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。例子:例1 在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:扩展资料:代数余子式求和带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号 。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素 的代数余子式 与 的值无关。仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式 就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得 的值。命题 1 n阶行列式 等于它的任一行(列)的所有元素与其对应的代数余子式的乘积之和:命题2 n阶行列式 的任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零:参考资料:百度百科---代数余子式