几何分布和超几何分布
几何分布:几何分布是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。超几何分布:超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。 超几何分布中的参数是N,n,M,上述超几何分布记作X~H(N,n,M)。
什么是超几何分布
超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。举例超几何分布中的参数是N,n,M,上述超几何分布记作X~H(N,n,M)。扩展:超几何分布是统计学上一种离散概率分布。统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域。统计学的英文statistics最早源于现代拉丁文Statisticum Collegium(国会)、意大利文Statista(国民或政治家)以及德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。十九世纪,统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。
如何判断是超几何分布还是二项分布?
1、超几何分布类型的问题,知道总体的个数N,并且总体中的元素分为两类,常用的是分为正品、次品或男生、女生等等。2、二项分布解决的问题是独立重复试验,“重复”的意思是每次事件发生的概率相等。题目中的条件是进行n次独立重复试验,每次试验中成功的概率为p,二项分布研究的是这n次试验中成功k次的概率。当试验次数为1时,二项分布服从0-1分布。扩展资料:二项式分布的期望和方差的求法:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和.设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).因X(k)相互独立,所以期望:方差:参考资料来源:百度百科-二项分布参考资料来源:百度百科-超几何分布
二项分布和超几何分布
二项分布和超几何分布都是高中内容。二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这种单次成功/失败试验被称为伯努利试验,而当n=1时,二项分布就是伯努利分布。二项分布是显著性差异的二项试验的基础,可以帮助我们了解和监控生产实践过程中由于某些因素而导致的波动。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是N,n,M,上述超几何分布记作X~H(N,n,M)。统计学定义:在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。