请问,相互独立的事件A,B,如果用韦恩图(集合思想)表示,要如何画图,求分析
如图:当A,B两事件概率均大于0时,独立一定不互斥,互斥一定不独立。证明如下设P(A)0,P(B)0。若A,B独立→ P(AB)0→ AB≠若A,B互斥→ AB= → P(AB)≠P(A)P(B)→ A,B不独立韦恩图来看的话,两事件独立的必要条件为必须有公共部分。若无公共部分,一定不独立。其实也比较好理解,若两事件(均为概率大于0的事件)不相交,即为互斥事件,那么A发生,B就一定不发生;B发生,A就一定不发生,那么由此可看出这两事件有相关性,那么肯定不独立。但是韦恩图有公共部分仅仅只是独立性的必要条件,并非充分条件。只有当韦恩图A,B有公共部分,并且满足P(AB)=p(A)p(B)。才表示为独立事件。所以相互独立的事件要用两个有交集的大圆圈表示。但是有交集的大圆圈并不一定是相互独立的事件,还需要满足独立的概率公式。扩展资料韦恩图(文氏图)画图:在文氏图法中,如果有论域,则以一个矩形框(的内部区域)表示论域;各个集合(或类)就以圆/椭圆(的内部区域)来表示。两个圆/椭圆相交,其相交部分表示两个集合(或类)的公共元素,两个圆/椭圆不相交(相离或相切,而实际上在文氏图中相切是没有什么意义的,因为文氏图是以图形的内部区域来表示的)则说明这两个集合(或类)没有公共元素。文氏图与其它的图示法一样,它不能准确表示一个集合(或类)中到底有哪些元素。有时在文氏图在外面绘制一个方框(叫做全集)来展示所有可能事物的空间。如上提及到的,鲸可以表示为不在并集中但在(活物或所有事物,依赖于你如何选择对特定图的全集的定义)全集中一个点。参考资料来源:百度百科-相互独立
venn图怎么读
维恩图(英语:Venn diagram),或译Venn图、文氏图、温氏图、韦恩图,是在所谓的集合论(或者类的理论)数学分支中,在不太严格的意义下用以表示集合(或类)的一种草图。 扩展资料 在维恩图法中,如果有论域,则以一个矩形框(的内部区域)表示论域;各个集合(或类)就以圆/椭圆(的内部区域)来表示。两个圆/椭圆相交,其相交部分表示两个集合(或类)的公共元素,两个圆/椭圆不相交(相离或相切,而实际上在维恩图中相切是没有什么意义的,因为维恩图是以图形的内部区域来表示的)则说明这两个集合(或类)没有公共元素。 比如黄色的圆圈(集合A)可以表示两足的所有活物。蓝色的圆圈(集合B)可以表示会飞的所有活物。黄色和蓝色的圆圈交叠的区域(叫做交集)包含会飞且两足的所有活物──比如鹦鹉。(把每个单独的活物类型想像为在这个图中的某个点)。 人和企鹅会在橙色圆圈中不与蓝色圆圈交叠的部分中。蚊子有六足并且会飞,所以蚊子的点可以在蓝色圆圈中不与橙色圆圈交叠的部分中。不是两足并且不会飞的`东西(比如鲸和响尾蛇)可以表示为在这两个圆圈之外的点。在技术上,上面的维恩图可以解释为"集合A和集合B之间的联系,它们可以有一些(但不是全部)的元素是公共的"。 集合A和B的组合区域叫做集合A和B的并集。在这个个例中并集包含要么两足、要么会飞、要么两足并且会飞的所有东西。圆圈交叠暗示着两个集合的交集非空──就是说在事实上有活物同时在黄色和蓝色圆圈中。 维恩图与其它的图示法一样,它不能准确表示一个集合(或类)中到底有哪些元素。 有时在维恩图在外面绘制一个方框(叫做全集)来展示所有可能事物的空间。如上提及到的,鲸可以表示为不在并集中但在(活物或所有事物,依赖于你如何选择对特定图的全集的定义)全集中一个点。