初一上册数学知识点归纳北师大版
第一章有理数
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba
4.乘法结合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章整式(一)整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没有掌握的。
1,从数轴上看,0是()
A,最小整数B,的负数C,最小的有理数D最小的非负数
2,一个数的相反数小于它本身,这个数是()
A,非负数B,正数C,0D,负数
3,冬季某天我国三个城市的气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是()
A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃
4,下列说法正确的有()
A,正数和负数统称为有理数B,有理数是指整数、分数、正有理数、负有理数和0五类C,一个有理数不是整数就是分数D,整数包括正整数和负整数
5,若a、b为有理数,a>0,b<0,且|a|<|b|,那么下列说法不正确的是()
A,若将数a、b在数轴上表示出来,则a在原点右侧,b在原点左侧。
B,因正数大于一切负数,所以a>b。
C,若将数a、b在数轴上表示出来,则数a与原点的距离比较b与原点的距离小。
D,在数轴上,表示a,|a|,b的点从左到右依次为a,b,|a|
6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多项式有()A.2个B.3个C.4个D5个
A、-3x2B、(5a-4b)/7C、(3a+2)/5xD、-2005
北师大版初一数学上册知识点
学习数学只依靠一些 学习 方法 还是难以说很完善的,如果对它没有兴趣不了解学习的意义还是很难静下心来在这上面下功夫的。这次我给大家整理了北师大版初一数学上册知识点,供大家阅读参考。 目录 北师大版初一数学上册知识点 七年级数学上册学习方法 初一上册数学知识点总结 北师大版初一数学上册知识点 一、:代数初步知识。 1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式) 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“?”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“?”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用 分数线 将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a. 二、:几个重要的代数式(m、n表示整数)。 (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2; (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1; (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2. 三、:有理数。 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数; (2)有理数的分类:①② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论; (3) |a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|, 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 四、:有理数法则及运算规律。 (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 2.有理数加法的运算律: (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 4.有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 5.有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac. 6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 7.有理数乘方的法则: (1)正数的任何次幂都是正数; 五、:乘方的定义。 (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3) 据规律底数的小数点移动一位,平方数的小数点移动二位. 六、:整式的加减。 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。 或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)是常见的两个二次三项式. 5.整式:单项式和多项式统称为整式. 七、:整式分类为。 1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 2.合并同类项法则:系数相加,字母与字母的指数不变. 3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号. 4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 八、:一元一次方程 1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”! 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3.方程:含未知数的等式,叫方程. 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0). 9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解). 九、:列一元一次方程解应用题。 (1)读题分析法:…………多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法:…………多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 十、:.列方程解应用题的常用公式。 <<< 七年级数学 上册学习方法 一、看书习惯 这是自学能力的基本功。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%~25%的知识是来自学校,而75%~80%的知识是靠他们离校后通过工作、自学和科研来获得的。根据心理规律,初中学生已经具备阅读能力,但由于在小学受直观模仿习惯的影响,使众多学生误把数学课本当作习题集。所以从初一开始就应重视纠正自己的错误学习习惯,树立数学课本同样需要阅读的正确思想,并注意 总结 如何阅读数学课本的方法。 1.每一节课前都务必养成预习的习惯,努力在预习中发现自己不懂的问题,以便能带着问题听讲。 课堂上注意老师如何阅读课文,从中培养自己掌握如何分析定义、定理中的关键字、词、句以及与旧知识的联系。 2.经常归纳总结学过的知识,培养复习习惯。 刚开始时,可跟着老师总结一节课或一个单元的内容,一个阶段后可根据老师提出的复习提纲,自己带着问题去钻研课文,最后过渡到由自己归纳,促使自己反复阅读课文,及时复习,温故知新。 二、笔记习惯 “好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。在“听”与“记”两个方面,听是基础,切莫只顾“记”而影响“听”。 为了使课堂笔记逐步提高质量,同学间应进行适当的交流,相互取长补短。 三、动手实践、合作交流习惯 “实践出真知”。动手实践能集中注意力,提高学习兴趣,能加深对学习对象的印象和理解。在动手实践中,能把书上的知识与实际事物联系起来,能形成正确深刻的概念。在动手实践中,能手脑并用,用实际活动逐步形成和发展自己的认知结构,能形成技能,发展能力。在动手实践中养成“做前猜想-----动手实验-----操作结果-----归纳总结”的习惯。 “三人同行,必有我师”。同学间相互交流学习结果,各抒己见,取长补短。能达到动脑、动口、动手、激发思维、活跃气氛、调动积极性的作用。 四、作业习惯 数学作业是巩固数学知识、激发学习兴趣、训练数学能力的重要环节。有些同学视作业为负担,课后只凭着课堂上的印象匆忙作答,往往解法单一;有的还字迹潦草、马虎粗心、格式不规范、甚至抄袭。这就错失了训练良机,严重地响了学习效果。应该正确认识做作业的目的性,培养良好的作业习惯。良好的作业习惯应包括: 1.要养成作业前看书的习惯。 做作业前要认真阅读复习课文、观察例题的解题格式、步骤和方法。这正是“磨刀不误砍柴功”。 2.要养成审题的习惯。 读题后,先弄清题目是什么题型、它有什么条件、有哪些特点等。 3.要养成独立作业的习惯。 若有特殊情况,不能如期完成,可向老师说明情况:如遇到难题不会做时,可向老师或同学请教,弄懂以后独立完成。切不可为了应付任务而去抄袭。 4.要养成对已做作业进行再思考的习惯。 不少同学不重视对已做作业进行再看、再思考,从而导致错误做法在头脑中形成定势。有的题目做错,老师订正过了,你还错,就是这个原因。常此下去,在新知识和做新作业中会出现更大的错误,为了巩固作业的成果,同学们在每次做新的作业之前,务必对前一天的作业进行反馈。反馈内容包括:(1)题目类型;(2)解题思路与方法;(3)出错问题的原因;(4)订正出错问题;(5)收集出错问题(就是将自己出错的问题专门收集在一个地方,标注出以上四项内容,以便将来复习时纠错)。 五、思维习惯 科学的思维方法和良好的思维习惯是开发智力、发展能力的钥匙。心理学告诉我们,初一阶段是学生从形象思维向 抽象思维 转变的重要时期,所以这时候一定要重视良好的思维习惯的培养。根据初中数学内容的特点,良好的思维习惯包括逻辑性、周密性、发散性、收敛性、逆向性。 1.逻辑性。 这是要求学生“答必有据”切忌想当然。在推理演算过程中,能够懂得其中每一步的依据,不懂之处就不写,设法弄懂之后再继续推理演算。 2.周密性。 这是要求学生全面的考虑问题。如:已知点C在直线AB上,线段AB=8cm,线段BC=3cm,求线段AC的长。全面考虑问题就要分点C在线段AB上和点C在线段AB的延长线上两类进行讨论:当点C在线段AB上时,AC=AB-BC=8-3=5cm;当点C在线段AB的延长线上时,AC=AB+BC=8+3=11cm。培养这种习惯,应特别注意老师在课堂上指出的“易出错或想不全”的情形与原因。 3.发散性。 这是要求学生运用多种办法解决一个问题。培养这个习惯,要特别注意老师在讲一题多解时的思考方法、问题推广延拓时的分析,在数学学习过程中努力养成寻求一题多解,一题多变的习惯。 4.收敛性。 这是在 发散思维 的基础上进行归纳总结,以达到多题一解、举一反三。发散与收敛两种思维综合运用可相得益彰。 5.逆向性。 这是要求学生把某些公式、法则、定理的顺序颠倒过来考虑。如计算: (-0.38)×4.58-0.62×4.58,可以逆向运用乘法分配律,就得到简便计算的方法 <<< 初一上册数学知识点总结 有理数及其运算板块: 1、整数包含正整数和负整数,分数包含正分数和负分数。 正整数和正分数通称为正数,负整数和负分数通称为负数。 2、正整数、0、负整数、正分数、负分数这样的数称为有理数。 3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。 整式板块: 1、单项式:由数与字母的乘积组成的式子叫做单项式。 2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 3、整式:单项式与多项式统称整式。 4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。 一元一次方程。 1、含有未知数的等式叫做方程,使方程左右两边的.值都相等的未知数的值叫做方程的解。 2、移项:把等式一边的某项变号后移到另一边,叫做移项等。 其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。 大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在 笔记本 上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分。 <<< 北师大版初一数学上册知识点相关 文章 : ★ 七年级数学上册知识点总结第四章 ★ 北师大初一数学知识点总结 ★ 北师版初一数学期末知识点总结 ★ 初一数学知识点归纳梳理 ★ 北师大初中数学知识总结 ★ 北师大版初中数学教案 ★ 七年级数学的知识点归纳总结 ★ 北师大版七年级上册数学目录 ★ 北师大版数学七年级上册教案 ★ 北师大七年级数学上册目录 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?8a6b92a28ca051cd1a9f6beca8dce12e"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
北师大版七年级数学上册知识点
七年级上数学复习提纲 第一章 丰富的图形世界 1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球 2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥) 3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。 4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。 5、 特殊立体图形的截面图形: (1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。 (2)圆柱的截面是: 、圆 (3)圆锥的截面是:三角形、 。 (4)球的截面是: 6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。 7、常见立体图形的俯视图 几何体 长方体 正方体 圆锥 圆柱 球 主视图 正方形 长方形 俯视图 长方形 圆 圆 左视图 长方形 正方形 8、点动成 ,线动成 ,面动成 。 第二章 有理数 1 、正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数。 与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。 2 、有理数 (1) 正整数、0、负整数统称 ,正分数和负分数统称 。 整数和分数统称 。 0既不是 数,也不是 数。 (2) 通常用一条直线上的点表示数,这条直线叫数轴。 数轴三要素:原点、 、单位长度。 在直线上任取一个点表示数0,这个点叫做 。 (3) 只有符号不同的两个数叫做互为相反数。 例:2的相反数是 ;-2的相反数是 ;0的相反数是 (4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 两个负数,绝对值大的反而小。 3 、有理数的加减法 (1)有理数加法法则: ①同号两数相加,取相同的 ,并把绝对值 相加。 ②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。 互为相反数的两个数相加和为0。 ③一个数同0相加,仍得这个数。 (2) 有理数减法法则:减去一个数,等于加这个数的相反数。 4、 有理数的乘除法 (1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0。 (2) 乘积是1的两个数互为倒数。 例:- 的倒数是 ;绝对值是 ;相反数是 。 (3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。 有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。 0除以任何一个不等于0的数,都得0。 (4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。 在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是 。 正数的任何次幂都是正数,0的任何次幂都是0。 -1的奇次方是 ;-1的偶次方是 。 第三章、字母表示数 1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。 2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。 3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。 4、同类项所含的 相同;相同字母的 也相同。 注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。 5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。 6、去括号法则: (1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的 (2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里 第四章 平面图形及位置关系 1、直线、射线、线段 (1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。 (2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。 连接两点间的线段的长度,叫做 。 (3)线段的比较方法:叠和法和度量法。 (4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在 线段AB上,并且有(AB=BM),那么点M是AB的中点。 例:C是线段AB的中点,可得AC= = ,或者2AC= =AB, AC+ =AB , BC=AB- 。 2、角的度量与表示 (1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角 (2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2 3、 角的比较与运算 (1)角按大小分可分为锐角、直角、钝角、平角、周角。 (2)角平分线把一个角分成两个相等的角,角平分线是一条射线。 如果射线OC是<AOB的角平分线,则我们可知道<AOC= = <AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB- 4、平行线 (1)如何画平行线? (2)平行线的性质1:过直线外一点 与已知直线平行; 平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。 5、垂直 (1) 如何画垂线? (2) 垂线的性质1:过一点 一条直线与已知直线 。 垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。 垂直的性质3:点到直线的距离。 6、 有趣的七巧板: 七巧板是由5个等腰直角三角形,一个 ,一个 组成的。 第五章 一元一次方程 1、 从算式到方程 方程是含有未知数的等式。 方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。 就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。 2、等式的性质: (1). 等式两边加(或减)同一个数(或式子),结果仍相等。 (2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 3、把等式一边的某项变号后移到另一边,叫做移项。 (要移就得变) 4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。 5、常用体积公式: 长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ; 棱柱的体积= x高; 圆柱的体积=底面积X ; 圆锥的体积= X高。 6、常用的相等关系: (1)利润=售价- ;利润率=利润÷成本(进价) (2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数) 利息税=利息X税率=本金X利率X X ; 贷款利息=贷款金额X X 。 7、行程问题的主要类型及相等关系: (1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。 (2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。 8、解应用题的关键是 。 第六章生活中的数据 1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。 (从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。 ) 2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。 3、 (1) 扇形圆心角的度数= X该部分占总体的 ; (2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。 4、制作扇形统计图的步骤是什么? 5、各统计图的特点: (1)扇形统计图能清楚地表示出 ; (2)折线统计图能清楚地反映 ; (3)条形统计图能清楚地表现出 。 第七章 可能性 必然事件:事先能肯定它 确定事件{不可能事件:事先能肯定它一定 事件{不确定事件:事先无法肯定它 1、事情发生的可能性的大小: 机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。 2、要学会判断事情发生的可能性的大小。