二次函数顶点式公式是什么?
二次函数顶点公式:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。二次函数(顶点式):通过将函数解析式y=ax^2的函数图象平移可以得到二次函数的顶点式y=a(x-h)^2+k;通过顶点式可以确定抛物线的顶点坐标为(h,k)。扩展资料:系数表达的意义a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口。b和a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0)。c决定抛物线与y轴交点,抛物线与y轴交于(0,c)。
二次函数顶点公式
二次函数的顶点公式为:y=a(x-h)^2+k。二次函数的基本表示形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0),二次函数的图像是一条对称轴与y轴平行或者重合于y轴的抛物线。
任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上。当k=0时,抛物线a(x-h)2的顶点在x轴上。当h=0且k=0时,抛物线y=ax2的顶点在原点。
当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可以转化为两根式y=a(x-x1)(x-x2)。
二次函数的三种表达式如下:
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。
交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]。
二次函数顶点坐标公式是什么
顶点公式为 (-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]其中x1,2= -b±√b^2-4ac顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)注:在3种形式的互相转化中,有如下关系:h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a决定位置因素一次项系数b和二次项系数a共同决定对称轴的位置。当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a。当a>0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a)。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。以上内容参考来源:百度百科-二次函数
二次函数的顶点坐标公式是什么?
二次函数的顶点坐标公式是:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)。(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0)。(3)交点式(与x轴):y=a(x-x1)(x-x2)。(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。二次函数基本定义:一般地,把形如y=ax2+bx+c(a≠0),(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。交点式为y=a(x-x1)(x-x2)(仅限于与x轴有交点的抛物线),与x轴的交点坐标是A(X1,0)和B(x2,0)。